YOLO算法的關(guān)鍵技術(shù)在YOLO算法中,有幾個關(guān)鍵技術(shù)對其性能起著重要作用。首先是使用卷積神經(jīng)網(wǎng)絡(luò)提取圖像特征,其中引入了一些先進的網(wǎng)絡(luò)結(jié)構(gòu),如Darknet。其次是使用AnchorBox來提高目標定位的精度。此外,YOLO算法還引入了特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測等技術(shù),以處理不同大小的目標。YOLO算法在實時目標檢測和跟蹤中的應(yīng)用YOLO算法在實時目標檢測和跟蹤領(lǐng)域取得了明顯的成果。它不僅在檢測速度上遠超傳統(tǒng)方法,而且在目標定位和類別預(yù)測準確性上也表現(xiàn)出色。因此,YOLO算法在許多應(yīng)用中得到了廣泛應(yīng)用,如視頻監(jiān)控、自動駕駛和物體識別等。AI圖像處理板能實現(xiàn)24小時、無間隙信息化監(jiān)控。四川移動目標跟蹤
在深度學(xué)習(xí)中,解決訓(xùn)練數(shù)據(jù)不足常用的一個技巧是“預(yù)訓(xùn)練-微調(diào)”(Pretraining-finetune),即大數(shù)據(jù)集上面預(yù)訓(xùn)練模型,然后在小數(shù)據(jù)集上去微調(diào)權(quán)重。但是,在訓(xùn)練數(shù)據(jù)極其稀少的時候(只有個位數(shù)的訓(xùn)練圖片),這個技巧是無法奏效的。圖2展示了一個檢測模型預(yù)訓(xùn)練過后,在單張訓(xùn)練圖片上微調(diào)的過程:盡管訓(xùn)練集上逐漸收斂,但是檢測器仍無法檢測出測試圖片中的物體。這反映出了“預(yù)訓(xùn)練-微調(diào)”框架的泛化能力不足。利用SpeedDP經(jīng)過大量的數(shù)據(jù)訓(xùn)練后,機器就能夠精確檢測跟蹤圖像中的物體。江西質(zhì)量目標跟蹤工程師以RK3399PRO核心板為基礎(chǔ)進行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。
目標跟蹤(Target Tracking)是近年來計算機視覺領(lǐng)域比較活躍的研究方向之一,它包含從目標的圖像序列中檢測、分類、識別、跟蹤并對其行為進行理解和描述,屬于圖像分析和理解的范疇。從技術(shù)角度而言,目標跟蹤的研究內(nèi)容相當豐富,主要涉及到模式識別、圖像處理、計算機視覺、人工智能等學(xué)科知識;同時,動態(tài)場景中運動的快速分割、目標的非剛性運動、目標自遮擋和目標之間互遮擋的處理等問題也為目標跟蹤研究帶來了一定的挑戰(zhàn)。由于目標跟蹤在視頻會議、安全監(jiān)控、導(dǎo)彈制導(dǎo)、醫(yī)療診斷、高級人機交互及基于內(nèi)容的圖像存儲與檢索等方面具有廣泛的應(yīng)用前景和潛在的經(jīng)濟價值。
但這也遇到很多難點,通常情況下,視頻回傳的延遲大概在200ms左右,隨著大量的彈打出,視頻傳輸所需帶寬就面臨壓力,如何在通信帶寬有限的情況下,保證視頻順暢、清晰、無卡頓地傳輸,是分析改進這個工作需要解決的前期難點。針對于這個問題,慧視光電利用GS弱網(wǎng)高清音視頻傳輸系統(tǒng)和RK3588打造的Viztra-HE030圖像處理板結(jié)合,推出了低延遲低帶寬圖傳解決方案。在一個窄帶收發(fā)信道內(nèi),例如在信道有效帶寬0.5Mb/s~2Mb/s內(nèi),多路視頻和交互控制共用一對收發(fā)信道,信道支持數(shù)據(jù)透傳,外部系統(tǒng)可以使用該信道,傳輸任意格式的數(shù)據(jù);可實時調(diào)整視頻碼率,在低至500K帶寬情況下依然可以回傳清晰流暢的圖像。可以使設(shè)備飛的更遠、走的更遠;可實現(xiàn)視頻中繼轉(zhuǎn)發(fā);能夠基于H265實時視頻編碼;可實現(xiàn)基于視頻流的“人在回路低延遲控制”。基于普通60幀相機,實現(xiàn)15ms的低延遲編解碼,加上數(shù)據(jù)鏈傳輸延遲時間在30ms左右,目前業(yè)界前列。通用性強,使用更加靈活,適用更多應(yīng)用場景;支持多路SDI視頻在低至500K帶寬情況下的同時傳輸(1080P60FPS),徹底解決“帶寬苦惱”;整體時延約60ms(含相機、編解碼、顯示,不含傳輸),實現(xiàn)實時控制、實時打擊。RK3588作為慧視光電開發(fā)的全國產(chǎn)化工業(yè)級板卡,具備高性能、高精度的優(yōu)點。
設(shè)想這樣一個場景:孫悟空在飛行過程中完成了一次變化(這里假設(shè)他變成了一只鳥),但這個變化并不是像西游記拍攝中有煙霧效果完成的,而就是通過身體結(jié)構(gòu)發(fā)生漸變來完成的,這種情況下,檢測器應(yīng)該會在后續(xù)的檢測任務(wù)中失敗,因為設(shè)計好的檢測器只是為了檢測目標孫悟空的存在,孫悟空變身之后已經(jīng)不存在這個目標,檢測器是不會有火眼金睛繼續(xù)檢測到變化后的孫悟空的。但是,對于跟蹤設(shè)備就不一樣了,跟蹤目標,哪怕目標在跟蹤過程中發(fā)生了巨大變化,這些都是跟蹤設(shè)備的本質(zhì)能力。理想的跟蹤設(shè)備應(yīng)該可以很好的跟上孫悟空漸變的整個過程,并且可以繼續(xù)后面變身之后對鳥的跟蹤?;垡昍V1126圖像跟蹤板支持目標跟蹤識別目標(人、車)。數(shù)據(jù)目標跟蹤互惠互利
慧視光電開發(fā)的慧視AI圖像處理板,采用了國產(chǎn)高性能CPU。四川移動目標跟蹤
目標跟蹤是在首幀中給定待跟蹤目標的情況下,對目標進行特征提取,對感興趣區(qū)域進行分析;然后在后續(xù)圖像中找到相似的特征和感興趣區(qū)域,并對目標在下一幀中的位置進行預(yù)測。作為計算機視覺領(lǐng)域的一個熱點研究方向,目標跟蹤一直都是一項具有挑戰(zhàn)性的工作。目標跟蹤技術(shù)在導(dǎo)彈制導(dǎo)、智能監(jiān)控系統(tǒng)、視頻檢索、無人駕駛、人機交互和工業(yè)機器人等領(lǐng)域具有重要的作用。從上世紀50年代目標跟蹤的起源到現(xiàn)今,盡管已有大量的研究成果,但是在復(fù)雜條件下實現(xiàn)實時準確的跟蹤依舊難以實現(xiàn)。四川移動目標跟蹤