久久青青草视频,欧美精品v,曰韩在线,不卡一区在线观看,中文字幕亚洲区,奇米影视一区二区三区,亚洲一区二区视频

上海定制科學(xué)計(jì)算軟件設(shè)計(jì)

來(lái)源: 發(fā)布時(shí)間:2025-06-22

14.4 惰性函數(shù)Det - 惰性行列式運(yùn)算符Eigenvals - 數(shù)值型矩陣的特征值和特征向量Hermite, Smith - 矩陣的Hermite 和Smith 標(biāo)準(zhǔn)型14.5 LinearAlgebra函數(shù)Matrix 定義矩陣Add 加/減矩陣Adjoint 伴隨矩陣BackwardSubstitute 求解 A . X = B,其中 A 為上三角型行階梯矩陣BandMatrix 帶狀矩陣Basis 返回向量空間的一組基SumBasis 返回向量空間直和的一組基IntersectionBasis 返回向量空間交的一組基BezoutMatrix 構(gòu)造兩個(gè)多項(xiàng)式的 Bezout 矩陣BidiagonalForm 將矩陣約化為雙對(duì)角型CharacteristicMatrix 構(gòu)造特征矩陣特點(diǎn):界面簡(jiǎn)潔明了,功能布局合理,易于上手;上海定制科學(xué)計(jì)算軟件設(shè)計(jì)

上海定制科學(xué)計(jì)算軟件設(shè)計(jì),科學(xué)計(jì)算軟件

Dimension 行數(shù)和列數(shù)DotProduct 點(diǎn)積BilinearForm 向量的雙線性形式EigenConditionNumbers 計(jì)算數(shù)值特征值制約問(wèn)題的特征值或特征向量的條件數(shù)Eigenvalues 計(jì)算矩陣的特征值Eigenvectors 計(jì)算矩陣的特征向量Equal 比較兩個(gè)向量或矩陣是否相等ForwardSubstitute 求解 A . X = B,其中 A 為下三角型行階梯矩陣FrobeniusForm 將一個(gè)方陣約化為 Frobenius 型(有理標(biāo)準(zhǔn)型)GaussianElimination 對(duì)矩陣作高斯消元ReducedRowEchelonForm 對(duì)矩陣作高斯-約當(dāng)消元GetResultDataType 返回矩陣或向量運(yùn)算的結(jié)果數(shù)據(jù)類型楊浦區(qū)質(zhì)量科學(xué)計(jì)算軟件設(shè)計(jì)這些軟件各有特點(diǎn),選擇合適的工具通常取決于具體的應(yīng)用需求和個(gè)人的使用習(xí)慣。

上海定制科學(xué)計(jì)算軟件設(shè)計(jì),科學(xué)計(jì)算軟件

simplify/sqrt - 根式化簡(jiǎn)simplify/trig - 化簡(jiǎn)trig 函數(shù)表達(dá)式simplify/zero - 化簡(jiǎn)含嵌入型實(shí)數(shù)和虛數(shù)的復(fù)數(shù)表達(dá)式6.2 其它化簡(jiǎn)操作Normal - normal 函數(shù)的惰性形式convert - 將一個(gè)表達(dá)式轉(zhuǎn)換成不同形式radnormal - 標(biāo)準(zhǔn)化一個(gè)含有根號(hào)數(shù)的表達(dá)式rationalize - 分母有理化第7章 操作多項(xiàng)式7.0 MAPLE 中的多項(xiàng)式簡(jiǎn)介7.1 提取coeff - 提取一個(gè)多項(xiàng)式的系數(shù)coeffs - 提取多元的多項(xiàng)式的所有系數(shù)coeftayl - 多元表達(dá)式的系數(shù)lcoeff, tcoeff - 返回多元多項(xiàng)式的首項(xiàng)和末項(xiàng)系數(shù)7.2 多項(xiàng)式約數(shù)和根gcd, lcm - 多項(xiàng)式的比較大公約數(shù)/**小公倍數(shù)

★ 大量的繪圖和動(dòng)畫(huà)工具,包括超過(guò)150種圖形類型?;贠penGL的可視化技術(shù),可定義相機(jī)軌跡。圖片輸出格式包括:BMP、DXF、EPS、GIF、等等?!?數(shù)據(jù)輸入和輸出格式:ASCII、CSV、MATLAB、Excel、等?!?各種文件處理工具,如頁(yè)眉頁(yè)腳、段落、幻燈片等;各種圖元件,刻度盤(pán)、滑動(dòng)條、按鈕等,可在圖元件中添加程序,實(shí)現(xiàn)交互式仿真操作。知識(shí)捕捉★ Maple是您所有數(shù)學(xué)工作的理想環(huán)境,您所想象的數(shù)學(xué)就是您在Maple中做數(shù)學(xué)的方式?!?多種格式(1D、2D)輸入數(shù)學(xué)內(nèi)容,如教科書(shū)一樣地顯示和操作數(shù)學(xué)和文字。簡(jiǎn)介:一款功能強(qiáng)大的數(shù)學(xué)軟件,支持符號(hào)計(jì)算、數(shù)值計(jì)算、圖形繪制等多種功能。

上海定制科學(xué)計(jì)算軟件設(shè)計(jì),科學(xué)計(jì)算軟件

1.4 素?cái)?shù)Randpoly, Randprime - 有限域的隨機(jī)多項(xiàng)式/首一素?cái)?shù)多項(xiàng)式ithprime - 確定第 i 個(gè)素?cái)?shù)nextprime, prevprime - 確定下一個(gè)比較大/**小素?cái)?shù)1.5 數(shù)的進(jìn)制轉(zhuǎn)換convert/base - 基數(shù)之間的轉(zhuǎn)換convert/binary - 轉(zhuǎn)換為二進(jìn)制形式convert/decimal - 轉(zhuǎn)換為 10 進(jìn)制convert/double - 將雙精度浮點(diǎn)數(shù)由一種形式轉(zhuǎn)換為另一種形式convert/float - 轉(zhuǎn)換為浮點(diǎn)數(shù)convert/hex - 轉(zhuǎn)換為十六進(jìn)制形式convert/metric - 轉(zhuǎn)換為公制單位convert/octal - 轉(zhuǎn)換為八進(jìn)制形式1.6 數(shù)的類型檢查type - 數(shù)的類型檢查函數(shù)第2章 初等數(shù)學(xué)2.1 初等函數(shù)product - 確定乘積求和不確定乘積類軟件通常具備強(qiáng)大的數(shù)值計(jì)算能力,能夠處理包括微分方程、積分方程在內(nèi)的各種數(shù)學(xué)模型。黃浦區(qū)定制科學(xué)計(jì)算軟件24小時(shí)服務(wù)

云計(jì)算架構(gòu)的普及使得科學(xué)計(jì)算軟件能夠更加高效地利用計(jì)算資源,降低本地硬件的依賴。上海定制科學(xué)計(jì)算軟件設(shè)計(jì)

RootOf - 方程根的表示surd - 非主根函數(shù)roots - 一個(gè)多項(xiàng)式對(duì)一個(gè)變量的精確根turm, sturmseq - 多項(xiàng)式在區(qū)間上的實(shí)數(shù)根數(shù)和實(shí)根序列4.4 解方程eliminate - 消去一個(gè)方程組中的某些變量isolve - 求解方程的整數(shù)解solvefor - 求解一個(gè)方程組的一個(gè)或者多個(gè)變量isolate - 隔離一個(gè)方程左邊的一個(gè)子表達(dá)式singular - 尋找一個(gè)表達(dá)式的極點(diǎn)solve/identity - 求解包含屬性的表達(dá)式solve/ineqs - 求解不等式solve/linear - 求解線性方程組solve/radical - 求解含有未知量根式的方程上海定制科學(xué)計(jì)算軟件設(shè)計(jì)

甘茨軟件科技(上海)有限公司在同行業(yè)領(lǐng)域中,一直處在一個(gè)不斷銳意進(jìn)取,不斷制造創(chuàng)新的市場(chǎng)高度,多年以來(lái)致力于發(fā)展富有創(chuàng)新價(jià)值理念的產(chǎn)品標(biāo)準(zhǔn),在上海市等地區(qū)的數(shù)碼、電腦中始終保持良好的商業(yè)口碑,成績(jī)讓我們喜悅,但不會(huì)讓我們止步,殘酷的市場(chǎng)磨煉了我們堅(jiān)強(qiáng)不屈的意志,和諧溫馨的工作環(huán)境,富有營(yíng)養(yǎng)的公司土壤滋養(yǎng)著我們不斷開(kāi)拓創(chuàng)新,勇于進(jìn)取的無(wú)限潛力,甘茨軟件供應(yīng)攜手大家一起走向共同輝煌的未來(lái),回首過(guò)去,我們不會(huì)因?yàn)槿〉昧艘稽c(diǎn)點(diǎn)成績(jī)而沾沾自喜,相反的是面對(duì)競(jìng)爭(zhēng)越來(lái)越激烈的市場(chǎng)氛圍,我們更要明確自己的不足,做好迎接新挑戰(zhàn)的準(zhǔn)備,要不畏困難,激流勇進(jìn),以一個(gè)更嶄新的精神面貌迎接大家,共同走向輝煌回來(lái)!